강의 웹사이트: http://hunkim.github.io/ml/
Facebook: https://www.facebook.com/groups/Tenso...
소스코드: https://github.com/hunkim/DeepLearnin...
Lec 00 - Machine/Deep learning 수업의 개요와 일정
- Andrew Ng’s and other ML tutorials
- Convolutional Neural Networks for Visual Recognition.
- Tensorflow
Lec 01 - 머신러닝의 개념과 용어
1. Machine Learning
- "Field of study that gives computers the ability to learn without being explicitly programmed” Arthur Samuel (1959)
2. Supervised/Unsupervised learning
- Supervised learning:
. learning with labeled examples
- Unsupervised learning: un-labeled data
. Google news grouping
. Word clustering
3. Types of supervised learning
• Predicting final exam score based on time spent
- regression
• Pass/non-pass based on time spent
- binary classification
• Letter grade (A, B, C, E and F) based on time spent
- multi-label classification
Lec 02 - Linear Regression의 Hypothesis 와 cost 설명
1. Linear hypothesis
H(x) = W x + b
2. Cost
H(x) - y
H(x) = W x + b
3. Goal : Minizie Cost
minimize cost(W,b)
Lec 03 - Linear Regression의 cost 최소화 알고리즘 설명
1. Hypothesis and Cost
- H(x) = W x
2. Gradient descent algorithm Minimize cost function
- formal definition
- How about Newton-Rapshon algorithm ?
3. Derivative Calculator : [link]
4. Check cost function
- must be convex curve
Lec 04 - Multi-variable linear regression
1. Hypothesis for multi-variable
2. Hypothesis using Matrix
'교육&학습 > Deep Learning' 카테고리의 다른 글
[학습] 모두를 위한 딥러닝 #5 Lec 07-1, 07-2, Lab 07-01, 07-02 (0) | 2017.12.10 |
---|---|
[학습] 모두를 위한 딥러닝 #4 Lec 06-1, 06-2, Lab 06-01, 06-02 (0) | 2017.12.09 |
[학습] 모두를 위한 딥러닝 #3 Lec 05-1, 05-2, Lab 05 (0) | 2017.12.07 |
[학습] 모두를 위한 딥러닝 #2 Lab 01 - Lab 04 (0) | 2017.11.30 |
0. 개발 환경 설정하기 ( 아나콘다, CUDA, TensorFlow GPU 버전) (0) | 2017.11.27 |